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Abstract—The impact of infusing breakthrough autonomy
technology into a flight project was a big surprise. Valuable
technical and cultural lessons, many of general applicability
when introducing system-level autonomy, have been learned
by infusing the Remote Agent (RA) into NASA’s Deep
Space 1 @S 1 ) spacecraft. The RA’s architecture embodies
system-level autonomy in three major components:
Planning and Scheduling, Execution, and Fault Diagnosis
and Reconfiguration. Lessons learned include: The
architecture was confirmed. Active participation by non-
autonomy personnel in the development is essential.
Communication of new concepts is essential, difficult, and
hampered by differences in terminology. Giving a spacecraft
system-level autonomy changes organizational roles in
operating the spacecraft after launch, and hence changes roles
during development. Software models supporting functions
traditionally handled on the ground must be developed early
enough to get on-board. Shortfalls in planned features must
be technically and developmentally accomodatable, in
particular not to threaten the launch schedule. Traditional
commanding must be supported. Testing must be
emphasized; end-to-end tests counter skepticism. These
lessons and others, on incremental system releases and use
of autocode generation, are based on 16 months of spiral
development from start of project through the project’s
decision to reduce the role of the RA from full-time control
of the spacecraft to a separable experiment.
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The NASA New Millennium Program (NMP) is designed
to flight-test new break-through technologies that have a
high impact on space science in the 2 Ist century. The

Program sets very high goals and the participating teams are
challenged to go outside of their comfort zone, This paper
reports on such an example: the development for flight
validation of the Autonomy Remote Agent (RA)
technology. The RA is a joint effort between JPL and
NASA Ames. The autonomy team set high goals for itself,
consistent with the broad, system-level nature of the
application, and with the tight schedule of the Deep Space 1
(DS 1 ) flight project. There have been major
accomplishments, and use of the technology has proceeded
on EM 1, though not as originally planned. The nature of the
challenges faced were multifaceted and they are all important
to technology infusion. One key area we underestimated
was the cultural challenge in using a breakthrough
technology.

1 Historically, major advances in spacecraft autonomy were
done within a flight project and introduced by the spacecraft
and mission operations team. The advancements are
evolutionary in nature and are mostly defined by mission
needs. In DS 1, although the Remote Agent extends
spacecraft autonomy based on previous accomplishments, it
does so in a big step with major involvement from
technologists. The autonomy enabled by the Remote Agent
in DS1 is system-level, not confined to a single subsystem
such as autonomous pointing by the Attitude Control
Subsystem. The Remote Agent transforms the entire
spacecraft from a traditional open loop system as seen from
the ground to a “closed-loop” system, and there are many
ramifications in this approach.

The purpose of this paper is to document major lessons
learned from the Herculean endeavor to achieve a significant
technology advance under the New Millennium Program.
On the one hand, the Remote Agent team failed to recognize
the extent of the systems  ad cultural  impact of doing
something radical. This underestimation of impact was one
contributing cause for the DS 1 project to cease to rely on the
Remote Agent as the controller of the spacecraft for the entire
mission, reducing its role to a week-long experiment. On
the other hand, the Remote Agent team also has validated a
major part of the approach and technologies on the ground,
significantly advancing the technology. The DS 1 lessons are



invaluable for the Remote Agent team and the autonomy
effort in NASA for ongoing and future work and these
lessons will also be valuable to any major attempt at
technology infusion where marry people are afjected.  The
lessons were gathered from the Remote Agent team
consisting of technologists, spacecraft engineers, mission
engineers and managers. While many lessons were learned
by other teams, in this paper, we chose to focus on only
those issues within the control of the team. There were
many other choices within the control of other teams which
also contributed to the situation.

2. TIIE NI;W MILLENNIUM PROGRAM

NMP focuses on new technologies that contribute
significantly to reducing the cost while increasing the
relative scientific capability of future space and Earth science
missions. Its key areas of focus are to lower mass to reduce
launch cost; to lower life-cycle costs to increase mission
frequency; and to reduce operations costs through greater
spacecraftautonorny.

The NMP will enable 21st century science missions
through the ident i f icat ion,  developnlent,  and flight-

validation of key advanced technologies. Breakthrough
technologies selected from the existing technology
pipeline—made up of technology programs of NASA, other
government agencies, industry, nonprofit organizations, and
academia-will be developed in partnership with these
organizations. These critical technologies will be validated
so that future science missions can take advantage of them
without assuming the risks inherent in their first use. NMF’
technology-validation flights will also provide opportunities
to capture meaningful science. New technologies will bc
infused into the nation’s commercial base, and significant
benefits to US industrial competitiveness will be realized
through the joint development program. I’he N e w
Millennium Program will also pioneer new ways of
partnering with industry, nonprofit organizations, and
academic institutions.

There are several NMP validation flights under
development. On DS 1 is the first deep space flight in a
trajectory representative of a realistic science mission, the
DS I spacecraft will fly by asteroid McAuliffe in January,
1999 and comet West-Kohouteck-Iken~  ura in June, 2000. A
flyby of Mars is also planned between the asteroid and the
comet encounters. The DS 1 spacecraft, scheduled to be
launched in July, 1998, is jointly developed by NASA and
the industry partner Spectrum Astro, Inc. At project start,
October 19, 1995, DSI was to carry and validate thirteen
new technologies, including: Autonomy Remote Agent,
Miniature Integrated Camera and Spectrometer, onboard
Optical Navigation, 3-D Stack Flight Computer, Solar
Electric Propulsion and Solar Concentrator Arrays. In
March, 1997, the planned role of the Autonomy Remote
Agent was changed, and the 3-D Stack Flight Computer
was deleted from DS 1 (see Section 6.). There are three
autonomy technologies on 1X31 and this paper covers the
development lessons for the Autonomy Remote Agent.

3. IX 1 AUTONOMY/ll,IGiII  SO F T W A R E

ARCtIITI:CTURE

A software architecture diagram [1] of the DS 1 flight
software as of February, 1997 is shown in Figure 1. A
high degree of spacecraftautonomy is made possible by a
run-time architecture consisting of: planner/scheduler,
mission manager, smart executive, mode identification and
reconfiguration, planning experts, fault monitors and real-
time execution. The real-time execution segment is where
the traditional real-time flight software such as attitude
control resides. The planner/scheduler, mission manager,
the smart executive and the mode identification and
reconfiguration (also referred to as fault diagnosis and
recovery) work closely together and are known collectively
as the Remote Agent. This is the top application layer of
the flight software managing the operations of the spacecraft
functions and it is the core of our new autonomy
architecture.

\( llanner/
Scheduler ) p:&”)/ ~



I’he Remote Agent’s design [3] is based on powerful and
exciting technologies which endow the spacecraft with
new behavior and capabilities. The Remote Agent carries
explicit models of the operational behaviors of the
spacecraft such as hardware state transition models,
resource requirements, and operational constraints. The
reasoning engines in the Remote Agent look for conflict-
freeprocedures cooperate the spacecraftin real-time. The
benefit of this approach is to bestow the spacecraft with
multiple means to function in uncertain environments
while reducing mission operations uplink requirements.
Constraint-based planning and scheduling ensures
achievement of long-term mission objectives and manages
the allocation of system resources. The smart executive
performs robust, multi-threaded execution to reliably
execute planned sequences under conditions of
uncertainty, to rapidly respond to unexpected events such
as component failures, and to manage concurrent real-time
activities. Mode identification and reconfiguration, based
on model-based diagnosis, uses hardware models to infer
the health of all system components based on inherently
limited sensor information and to generate novel repair
sequences. The three engines work together to transform
the spacecraftfrom an open loop-system (as seen by the
ground operator) to a closed-loop system. The closed-
loop approach allows the spacecraft to go into
environments that are more uncertain and to achieve our
science goals more reliably in the face of such uncertainty.
The other potential benefits of the Remote Agent are to
reduce mission development cost through software reuse,
to provide faster response to in-flight problems or
opportunities, and to reduce operations cost.

I’he Remote Agent also provides a scaleable, modular
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architecture for flight software. Specialized functions are
delivered as custom modular domain experts. These
functions can be traditional spacecraft subsystem functions
or they can be domain-specific autonomous functions
incorporating new technology, such as optical navigation.
This flexible and scaleable architecture can serve a wide
variety of systems, both in space and on the ground,

11S 1 flight software had approximately 120,000 lines of
code and so~o of it belonged to the Remote Agent. The
Remote Agent was part of the primary software. There
were two “rate groups”: 1 Hz and 1 to 0.1 Hz. The
Remote Agent was in the l-to-O. 1 Hz rate group and it
did not have hard deadlines. Figure 2, an interface block
diagram of the flight software, shows all the software
objects. The DS 1 flight hardware is accessed through the
1553 bus object as shown in the figure.

4 .  FLIGIIT  SOFTWAW,  lMPLEiMENTATION
A P P R O A C H

The RA was selected as one of the technologies to be
validated on DS 1 because it promised a significant impact
on 21 st century science missions and because it needed
flight validation to reduce risk. The autonomy team
consisted of autonomy software technologists from the
NASA Ames Research Center (ARC), the Jet Propulsion
Laboratory (JPL), Carnegie Mellon University (CMU),
I’RW Spacecraft Technology Division, and spacecraft
system and mission engineers from JPL.

Autonomy software technologists bring a host of
techniques including inference and search engines, multi-
tasking capabilities, sophisticated error correction, mode!-
based reasoning and declarative modeling languages.

L~
1 4

r 4.

SSR . . . &~-,~*
File Sy4m

L
N..

— I lULD,j  Uti— —

-t-E-l

HcO
da

[ TLM RSDL t MFS I

R [?/SSE SRU

~F{ .K%5,,!%5’’,T,

~omn “men’ “men$$$ -:@~ Sos
‘ASM Gza CGIa

Gzzl
LPEK

PEPE - -

IPS PDu Tdemm

r- 1=,=.. I

Figure 2. DS 1 Flight Software Block Diagram



These technicpres  can be used to develop onboard software
capable of ccmducting spacecraft mission activities with
much reduced reliance on ground intervention. On DSI,
software researchers were also implementers and worked
closely with spacecraft engineers to implement the Remote
Agent. The intent was forthe spacecraft engineers to learn
these methods and understand their applicability and
limitations from the technologists. For future missions, the
spacecraft engineers will implement the Remote Agent with
the technologists acting as consultants but not directly
involved.

In preparation for submitting the Remote Agent as a
candidate for flight validation, a rapid prototype was
developed to demonstrate the feasibility and applicability of
the system. Known as the New Millennium Autonomy
Architecture rapid Prototype (NewMAAP),  the prototype
demonstrated the autonomous execution of a simplified
version of the Saturn orbit-insertion activity for the Cassini
mission [2].

To reduce implementation risk, in addition to the normal
project reviews such as preliminary design review and
critical design review, the NMP technologies were required
to successfully pass three readiness gates:

“ Gate 1: show maturity and an adequate and complete
flight implementation plan.

● Gate 2: demonstrate functionality at the subsystem level.

● Gate 3: demonstrate functionality at the system level.

The DSI project was given a doubly challenging task: not
only was it required to demonstrate a record number of new
technologies ,  but  i t  was asked to complete  the
implementation in a short schedule of only 2.5 years from
inception to launch without even the benefit of a preproject

phase A. In order to meet the short schedule and develop a
software design concurrently with hardware developments,
the flight soft ware team adopted a spiral implemental ion
process as opposed to the traditional waterfall approach. The
software development process was divided into 6 cycles, RI
through R6. Each cycle releases software of increased
functionality and by the final release the software has
complete functionality capable of executing the full
mission. The capability in each cycle was identified by a
scenario defining a mission segment. Each software
component correspondingly develops the functionality to
accomplish the activities required by the segment.

Figure 3 contrasts the conventional waterfall method with
the spiral approach. Figure 4 identifies the mission
segments for each release.

The advantages of a spiral implementation plan are:
● It provides early feedback on interfaces and system

architecture.
● It allows early integration of all components including

ground and test environment.
● It makes an end-to-end running system available for

system-level tests.
● It enables test tools and procedures to be identified.
c It facilitates incremental deliveries.

Since DS 1 had no preproject phase A, little experience was
available to guide the interval and work load between
releases. Experience from the previous release was used to
mride the ~lannirw ofsubsectuent  releases. Firzure 5 shows
~hc scheduie  forth; spiral development approa;h.

Each build cycle:.
● Scenario & capability driven
● define interfaces

G unit build & test
● system integration & test

● demonstrate scenario

=ventional  Approach (water fall model)
● Requirements

● Design
● Implement

● Unit test
“ Integration

● System testing

4 N  y e a r s  _ _ _

DS1 Autonomy team Approach (spiral model)
(“Req”, design, . . . unit test, integ, sys test) Release

( ) Release 2
( ) Release 3

( ) Release 4

Figure 3. l’he Spiral Development Process



RI: Ballistic Cruise scenario on
workstation environment with

● Inter-Process Communication,
“ Remote Agent,
“ Optical-Navigation orbit determination
● Preliminary Attitude Control Subsystem

(ACS).

J
R2: Add Ion Propulsion System (IPS) cruise &

Earth Communication scenarios; on mixed
VxWorks (68040)/workstation environment with

—
33: Add Flyby scenarios on VxWorks (PPC/

Commercial RAD6000) environment* with
R2 capabilities +
“ Autonomous navigation,
“ RCS delta-V,

● Solar array controller,
● Ground segment commandhelemetry,
● Telecom  system including Small Deep Space

Transponder,

● Power system incl. SCARLET and battery,
“ MICAS science.

● Planner still on

*

RI capabilities +
“ MICAS imaging for navigation maneuvers,

“ Reaction Control System (RCS) attitude control,
● Command and Telemetry, Beacon,
“ Ground segment data transport.

R4: Add Power-On-Reset and Launch scenarios
R3 capabilities +

● ACS with cruise, IPS, panel control,
● IPS variable thrusting,

● IPS diagnostics package,
● Planner bypass,

“ Thermal control,
● PEPE science.

iorkstation

R5: Add Technology experiments.
R4 capabilities +

● SCARLET characterization. F“==l-

Figure 4. Software Releases, RI -R6 Definition
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5. CtIALLENGING INITIAL C ONDITIONS

The preceding sections have already discussed some of the
conditions and constraints which framed our technology
infusion effort. By highlighting some of the key conditions
in this section, we set the stage for many of the lessons
which follow. Our discussion of initial conditions and
assumptions is organized into two major themes: adoption
and schedule.

7echno10~  Adoption

Technology validation can raise particular challenges for
marketing and customer acceptance, because it relies on a
community of users to serve as “early adopters”. These
early adopters accept a fair amount of risk, because they
must work with a technology which has not yet been
demonstrated and accepted as standard in the ultimate
operational context. In the case of autonomy for DS 1, the
ground data system (GDS)  and mission operations system
(MOS)  personnel were the early adopters, who would use
the remote agent. However, the following aspects were
challenges from the start:

First, there was limited motivation for the GDS or MOS
participants in DS 1 to embrace the Remote Agent
technology. While it was recognized by many that Remote
Agent’s autonomy capability was an important e,nabling
technology for future missions, it was not actually an
enabling technology for DS1. All mission phases for DS 1
could be accomplished with traditional technologies that the
ground team was familiar with. Moreover, unlike some of
the other technologies to be demonstrated on DS 1, the
Remote Agent was not listed as a required or mission-
defming technology on this mission. Instead, it was treated
as a goal, which was part of the baseline but could be
dropped if the project encountered more pressing concerns.

In order to focus DS1 participants on making the
technologies work, the project was organized in such a way
as to depend on them despite the perceived risks. The
program office set the goal of developing “no backups” or
alternatives to the Remote Agent technology, and the
ground operations budget was restricted such that the
ground team would have to take advantage of the
autonomous capabilities to reduce operations costs. Similar
constraints were placed on the flight software development
team. There was to be no safety net or backup fault
protection to enable the mission to be run if the Remote
Agent failed for some reason. In effect, the Remote Agent
was placed both on the critical path of the mission and in a
mission-critical position within both the flight software and
the ground operations capabilities.

I’here  were also differing opinions about the ultimate
purpose of the new agent technology for future missions.
The primary intended use of autonomy is to leverage the
mission controller efforts by allowing the spacecraft to
function as an extension of the mission controller’s
capability. In contrast, some pre-DS  1 autonomy technology
advocacy focused on the concept of autonomy enabling “no
uplink” missions (perhaps eliminating the need for a receiver

on the spacecraft), in which the spacecraft achieved its
mission and sent down information to ground without any
input from ground during flight. While uplink may be
limited or impossible for some missions, support for such
missions is not the main benefit of autonomy. Focusing on
this extreme context neglects many of the needs perceived
by the mission operations conlnlunity. In pa~icular, it
avoids discussion of a meaningful interface for ground
operators to interact with the spacecraft. Enabling operators
to interact at whatever level is most appropriate and feasible
is a more desirable goal for autonomy [4].

.Vchedtile and Budget

The other major set of constraints on the mission had to do
with schedule and budget. These have been referred to
earlier. The fast schedule and limited budget were more
aggressive than those of any previous project. Thus, the
team was asked to develop the processes required for a new
software approach and execute those processes in less time
than was typically allotted to traditional flight software
development. Also, the hardware much of it also new-
technology development was to be developed concurrently
with the software. These conditions implied that we would
learn about new requirements and interactions throughout
the project, with limited time to respond to them to
everyone’s satisfaction. Combining this with the context
that we were inserting a new technology which was at the
same-time mission critical, it was difficult to separate the
schedule slips caused by the aggressive schedule from those
related to the technology development. See Yourdon [5] for
a discussion of the impact of initial conditions on software
development projects.

In an effort to meet the tight schedule and budget constraints
we used a spiral flight software development approach.
While the RA team supported the spiral development
approach, spiral development is not a necessary part of the
RA design. The lessons teamed from this development
approach are included in subsection 7.11 here to give the
context in which the technology was being inserted.

As should be clear, the initial conditions were very
challenging. Ideally, the Remote Agent would have been
directly linked to mission success, rather than indirectly as
it happened. Such direct linkage could have been in the
context ofa mission which required the agent capabilities as
mission enabling (for example, a comet lander such as
DS4).  [n the absence of this, additional scheduie and
resources could have increased chances of success.

6. ROI,E RE D U C T I O N  OF TI [[; REMOTE AGENI

In March, 1997, the Remote Agent status on the flight
changed, Instead of being the software responsible for
guiding the spacecraft’s flight operations, it is now being
flown as an experiment. The decision to change its status
was made based on difficulties encountered by engineers in
the integration and testing stage of the flight  software
development process. The development of the integrated
software was not expected to reach a stage of “flight
readiness” to meet DS I‘s delivery schedule for launch. The



.

difficulty was compounded by the perceived de~endenceof
the Remote Agent on the 3~1)  sta~k conlpute~,  which is
another new technology. The 3-D stack also had major
schedule difficulties. Due to schedule and integration
difficulties, the 3-D stack computer was replaced by the
RAD6000  computer, similar to the one used on the Mars
Pathfinder mission; the Mars Pathtinder software forms the
basis for much of the DS1 software.

The development of the Remote Agent software, however,
was going well. In fact, based on the work done, the team
developing the technology had demonstrated that it is every
bit as exciting and promising as we first believed. While
we will not have the complete capability that this software
provides on board the DS 1 spacecraft at launch, as originally
planned, NMP will still continue to develop the technology
so that the capability can be uplinked to the spacecraftafter
launch. The Remote Agent will be tested in space as a
week-long experiment [3].

l’he autonomy capability development and testing task
should be thought of as a continuous effort being undertaken
by the NMP; whatever portion of the technology is not
flown on one advanced technology flight (e.g. DS 1 ) will be
flown on another flight and so on, until  the full
technological capability has been tested in space. To this
end, we are planning for the final portion of the DSI Remote
Agent software capability to be tested on the Deep Space 3
(f)S3) mission.

The change in status of the Remote Agent software
technology does not reflect a lack of achievement by its
development team. On the contrary, the team’s effort has
been outstanding. The reason this promising technology’s
status was changed is because it was a part of a flight
software development that did not meet the ambitious
development schedule set by NMP, and the Project Manager
saw a possible way to reduce overall project schedule risk
by removing the new technology from the critical path.
Though NMP’s goal is the aggressive pursuit of developing
and flight-testing revolutionary, high-risk technologies, it
recognizes it may sometimes be necessary for projects to
back off from some technologies if they are on the project’s
critical path. The main body of this paper captures lessons
from development of the Remote Agent from October, 1995
(project start) to March, 1997. We intentionally omit
lessons learned by members of the project outside the
autonomy team.

7. L ESSONS LEARNH)

7.1 Impact On Project

ob.verlwtion

The magnitude of the impact of the Remote Agent on the
project development process surprised both au~nomy  and
non-autonomy people alike.

Discm.sion

“1’he Remote Agent approach required increased levels of
knowledge capture and formalization earlier in the process

than in traditional missions, [n order for the Remote Agent
to generate and execute a viable sequence to accomplish a
desired goal, it uses a large body of knowledge stored
onboard. This knowledge consists ot7

● the behavior of the spacecraft as designed by the system
and subsystem engineers.

● the behavior of the spacecraft hardware and its interaction
with the outside world, both nominal and off-nominal.

● the operation of the mission including flight rules and
constraints as developed by the mission design team in
conjunction with the project as a whole.

Arguably the same amount of knowledge and understanding
is required by a traditional approach. However, there are
significant differencesin terms of timing and precision of
knowledge capture required for autonomy. First, our
approach required substantially more of the system to be
formally captured in software models. Second, the models
represented both nominal and fault behaviors. Whereas
traditional missions leave much of the failure analysis to be
performed post-failure, our approach facilitated increased
robustness at the cost of up-front modeling of explicit
failures. That way, the system could diagnose and respond
to more problems onboard. Third, the information was
needed much earlier in the development process than in a
traditional approach. As in the case of fault models, our
approach enables more of the mission operations to be
worked out on-board the spacecraft, but our approach
required that flight rules and constraints be encoded within
the flight software development process, rather than as part
of the ground system development process. Final Iy, the
information needed to be transferred across multiple software
components as part of the original design, whereas the
traditional approach involves people talking across
organizational boundaries much later in the process. On
recognizing the demand for knowledge management, a
hardware modeling team was formed to coordinate the
hardware knowledge and develop the models.

In addition to the increased requirements for knowledge
management, system-level autonomy software influences and
is influenced by virtually the whole project, Thus the
infusion ofsystem-leve]  autonomy differs from the infusion
of new hardware technologies, for example a new processor,
where interaction with the rest of the system is limited.
System-1evel autonomy affects the spacecraft system, the
ground system, and the mission operations system.
Consequently a large nurnbcr of people across the project
needed to understand the changes that autonomy introduces
and its effect on their work. Elig impacts were on the system
engineering, ground/operations, and the system-level test
teams. For example, the test team needed to allocate
additional resources to account for their understanding of the
autonomy system and to develop test-plans to give them the
same confidence and comfort level of system reliability that
they traditionally provide. Moreover, increased autonomous
capabilities created more software and more required test
cases, further compounding challenges already present in
testingspacecraft  software.



The understanding of’ the magnitude of the impact d
autonomy on the project evolved with project maturity and
in some cases, as in the case of “modeling demands,” plans
were made that addressed the issue. Other cases, which
surfaced later, such as additional resources for system-level
tests, could not be accommodated principally because DS 1
operates under cost caps and a tight schedule.

Lessons

Technology readiness, while necessary, is not a sutllcient
indicator for the successful infusion of new levels &
autonomy in missions. An assessment of the impact d
autonomy on the development of the rest of the system
should be made.

Recognizing the significant impact of autonomy on project
development, the technologists should make
recommendations to the project on specific adjustments in
the development process and project organization to
facilitate comrnunicationj visibility and teaming.

The ground/operations and system-level test teams should
be included in the autonomous system prototype
development to reduce the learning-time burden during a
flight project. Alternatively, suft’icient  resources and margin,
especially schedule margin, should be allocated when
including autonomy to counter the effects of uncertainty on
the whole implementation process. On 1)S 1 autonomy
amounted to a “revolutionary” change in the development
and content of the flight software and ground systems.

Again, it should be noted that the rapid schedule of DS 1
eliminated the option of conducting a “Phase A“ study.
We highly recommend such studies in the future, especially
in cases where new autonomy capability is to be used, as
this can help identify many of the system-level interactions
and promote a better-informed schedule and process.

7.2 Launch Readiness

observation

Autonomy implementation was in the critical path and was
perceived to threaten the progress of the project to make the
launch date.

Discussion

On DS I the implementation of autonomy was not a
software layer built upon a traditional non-autonomous
system. Rather the architecture consisted of three, tightly
interacting autonomy modules, the Smart Executive+ Mode
Identification and Reconfiguration (MIR), and
Planner/Scheduler (P/S). The Smart Executive subsumed
the role of the on-board sequencer and could read both plans
and sequences from the ground. }Iowever,  it did not handle
the sequence blocks using the structure and tools previously
used by the ground system.

Milt  embodied the basics of the traditional fault-protection
function, albeit of much greater capability, of diagnosing
equipment failure and providing a recovery path or reverting
to stand-by when the failure is beyond onboard recovery. As

part of the Remote Agent, MIR informs the Executive of the
spacecraft current state and confirms to the Executive when
commanded activities are accomplished. The overall-fault
protection function was accomplished by all three modules
working in concert.

The Planner/Scheduler module subsunles the traditional
ground operator task of generating plans. The module
schedules the desired activities with the help of domain-
specific planning experts that estimate the required resources
and check for constraint violations. The plans generated are
high-level and are implemented by the Executive.

Of the three modules only the P/S could be located on the
ground, allowing additional human inspection of the plans
before they were sent to the spacecraft. Indeed this option
was available on DS 1 and known as the planner-bypass
mode. It was possible with the Remote Agent architecture
to reduce the extent of autonomy, even drastically. However,
with this architecture it was not possible to totally bypass
the RA; some parts of the RA were essential to operate the
spacecraft. This dependence on a new technology raised
enough of a concern that eventually, when integration
problems were threatening the launch schedule, the project
reduced the role of the RA to an experiment, removing it
from the critical path.

I,cssons

When autonomy is given an opportunity to be part of a
mission, every efFort  must be taken to first enable launch
capability. During implementation we must provide early
validation of any new technology on the critical path. We
must jointly with the mission operations team demonstrate
early-on the capability of the new technology to perfom~ the
traditional tasks that it is replacing so as to avoid a
perception that the technology is a risky item on the critical
path.

Ideal Iy, the chosen architecture should make autonomy
transparent to the traditional approach and allow for various
levels of autonomy to be implemented incrementally. This
approach is supported in the newer version of the RA [4].
Management should maintain detailed contingency plans fw
juggling scope and schedule. They should carefully track
the progress and be prepared to invoke the contingency
plans when problems surface so as to always safeguard
launch readiness. Special care should be taken when the
autonomy technology is being demonstrated on a mission
for the first time. ‘-

7.3 Impact on (3DS and MOS

observation

The etlkt of the Remote Agent on the requirements
design of the supporting Ground Data System (GDS)
Mission Operations System (MOS) was unclear to
developers of those systems.

Di.wussiotr

and
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A traditional GDS includes models of the spacecratl’s
hardware and software sufficient to predict, in response to a



proposed sequence ofspacecraftcommands, the state of the
spacecraft and how it varies with time. The level of detail of
the predictions (and hence of the models) is principally
determined by the flight rules that every sequence needs to
be checked against. Also, spacecraft subsystem analysts
require predictions sufficiently detailed that comparisons of
predicted values to actual values enable them to determine
how their subsystem is behaving.

The developers of the GDS felt caught between two
conflicting views. In a mature, intelligent spacecraft, one
that is commanded by high-level goals, and that can be
trusted to carry out reliably the necessary actions to
accomplish the goals, only high-level, simple models
would be needed on the ground to prepare a sequence.
(Even this statement skirts the issue of how to know that a
set of goals is accomplishable.) This view implies that
developing the GDS would be simpler than in a traditional
project.

The conflicting view saw a first-attempt, pathfinding effort at
on-board intelligence. For diagnosis of inevitable surprises,
this view saw the traditional level of predictions as
necessary as on a traditional mission. What’s more, such
predictions are more difficult to make, because the models
that make them would need to include models of the on-
board intelligence. Indeed, unlike in traditional missions,
detailed command-level predictions with accurate times are
simply not possible, since the Remote Agent uses actual
spacecraft states unknown to the ground predictors.

An additional unease felt by the GDS and MOS developers
stems from the fact that, commonly on projects, the flight
software at time of launch has fewer features than originally
planned (for many different reasons, including realities of
memory and processor speed). It is the traditional role of
the GDS and MOS to make up for such deficiencies.
Contemplating the possibility of an “unfinished” Remote
Agent brought fear of failure of the M(XS to be able to fill the
gaps.

So there was a dilemma. The (traditionally, at least)
healthy skepticism concerning whether the flight software
would do all that it originally intended to do was mixed
with outright skepticism of the whole autonomy effort.

It was not clear to the developers of the GDS and MOS
which traditional functions of those systems would be
supplanted by spacecraft features: which needed to be
modified from tradition, and which would remain
traditional. These developers feared that the autonomy
developers were inadvertently inaccurate in their descriptions
ofeffectson  the GDS and MOS from lack of experience in
those areas. Yet the people with that experience were not
knowledgeable on the autonomy, and so could not make
their own assessment of effects on the GDS and MOS.

Lmsom

The et’fectofthe introduction of autonomy in one part of a
large system on other parts must be gauged not only under
the assumption of complete success of the autonomous
element, but also under realistic possibilities of shortfalls.

The autonomy technologists and traditional GDS and MOS
developers must jointly and explicitly construct a mapping
of the traditional ground-supplied operations functions to the
corresponding ways of accomplishing those functions in the
new, autonomy-centered system.

An incremental approach to autonomy, which lets GDS and
MOS developers develop and exploit more autonomy
capabilities as they gain confidence in the technology, may
help ensure that important capabilities supported in the old
approach are still supported by the new technology.

7.4 Concurrent Development of Autonomy, CDS and
MOS

Observation

The autonomy development team, rather than the MOS
developers, prepared mission scenarios

Discussion

The spacecraft must understand high-level goals. this
implies that knowledge for deriving (from a goal) the low-
level commands needed to effect the goal must be rigorously
codified as part of the development of the spacecraft. Also,
as mentioned in section 4, the approach for phasing the
software development was based on mission scenarios. For
both of these reasons, it was the flight software development
team that took the initiative in devising the mission
scenarios and their details. Devising scenarios was done
concurrently with cycles of the software development, as a
way of tinding requirements and design for the on-board
software.

In contrast, in a traditional mission with a longer
development period, development of sequences is not
attempted until the low-level commands are defined. The
development of blocks, which are reusable, pararneterized
sequence fragments, is led by the spacecraft system
engineers. The implementation of those blocks in ground
software is the responsibility of the GDS developers. The
development of most sequences of commands and
invocations of blocks  is the responsibility of the MOS
developers.

The introduction of autonomy, and short development time
with or \vithout autonomy, both argue for concurrent
development of MOS, GDS, and flight software. The roles
of the various developers of these systems thus must change.

Also, because of the concurrency in development, changing
details of the codification of a goal in the on-board software
should be easy mechanically, and doable without changing
unaffected goals orothersoftware elements.

I.cssons

Specifying details of how to operate the spacecraft to
accomplish goals that are intended to be understood by the
on-board autonomy must be done early enough to be
encoded in flight software.



Such details will influence the flight software capabilities
and commands, and therefore must be done concurrently
with the development of the flight software.

MOS and GDS developers must work concurrently with
flight software and autonomy developers in defining mission
scenarios.

7.5 Teaming of Autonomy and GDS/MOS  Developers:
Differing Perspective

Observation

Though the autonomy team spent considerable effort
informing MOS developers of intended spacecraft features,
there remained a separation between the two groups of
people.

Discussion

On DS 1, there was close cooperation between autonomy
personnel ancl MOS developers. Weekly MOS Design
meetings were held, with active participation by autonomy
personnel. Yet, as launch drew nearer and details needed to
be worked, a gulf between the two groups seemed to appear.

This experience has multiple roots. One aspect is
communication. The MOS has a terminology built up over
many missions. As in any specialty, what seem to a
newcomer to be ordinary English words in fact bring with
them a rich circle of associations. These extra meanings are
tacitly understood by MOS experts, while non-experts may
not even know that such associations exist. Conversely,
autonomy researchers have their own terminology not
understood by outsiders such as MOS developers

Surprisingly, the confusion continued, perhaps because in
addition to using differentterminology,  the groups did not
share a single paradigm. The paradigm of experienced MOS
developers includes a strong emphasis on risk avoidance.
No sequence of commands to the spacecraft should cause the
spacecraftto exercise its fault protection capabilities; MOS
personnel consider such a sequence a failure. Every detail of
the operation of the spacecraft by a sequence should be
predicted and validated. If anything deviates from the plan,
this is viewed as a potential emergency and the spacecraft
should be put into a safe state from which MOS personnel
can respond.

The autonomy approach enables the spacecraft to respond to
some of these abnormal situations by taking a recovery
action and generating a plan appropriate to the new
situation. This means that MOS personnel will not be
involved in some cases where they normally would have
been. Until they are convinced that the autonomous
approach really works, they will feel very uncomfortable
about giving up any of their protective role in spacecraft
operations. In the case of a newly developed autonomy
capability, MOS will not have corrfidenceuntil  very late in
the design process (possibly not even until a month or so
into flight). Thus they will be on their guard and extremely
conservative about what capabilities are delegated to the
autonomy software.

Another difference between the groups is the primary goal of
each group. This difference pertains to any new technology.
The technologists’ fundamental goal is to demonstrate that
their technology works (which requires a successfully
executed mission). The primary goal of the MOS personnel
is to execute the mission. The analogous tension in a
traditional project is that between the scientists and MOS
personnel. At times, the scientists must be reminded that
no observations will come forth if the spacecraft is injured.
Conversely, at times the MOS personnel must be reminded
that having a safe spacecraftbut making only a few science
observations is missing the point of the mission.

I.essom

The MOS developers must actively participate in a shared
vision of the role of autonomy on the mission. MOS
developers and autonomy developers must form a single
team. Working together, they must develop and use a single
set of terms. One way to effective team-building is to
jointly work on a prototype before the implementation of a
flight project with its attendant tight schedule.

Realistic operations scenarios must be worked through to
bring out differences in viewpoint. Resolution of the
differences must be agreed to.

7.6 “1.ast-Minute”  Fine-Tuning of Sequences Before
Committing to Execution

Observation

Traditional “last-minute” tine-tuning and checking of
sequences of commands, often related to up-to-date
knowledge of the spacecraft’s tmjectoty,  is not applicable for
a spacecraft with autonomy.

Discussion

In a traditional MOS, for an activity that will be repeated
during the mission, a “block” is defined. A block is a
parametrized set of spacecraft commands, with time
spacing, that will accomplish the activity. Specific instances
of the blocks are tested before launch. Later, nearer the time
of intended execution, each sequence, consisting of instances
of blocks plus some individual commands, will be built and
tested. In some cases, minor changes will be made to the
sequence either just before or even after the sequence is
uplirrked to the spacecraft(but  before the scheduled time of
the first command in the sequence).

The testing and analysis of blocks is meant to cover all
reasonable values of the parameters in the blocks. But there
is a significant sense in which such generality is not
completely depended upon. Namely, each specific sequence
always goes through some level of testing, which covers
some aspects of the total set of commands in the sequence,
even those that come from a block. Traditionalists are used
to doing some testing and human review of every specific
sequence that the spacecraft \vill execute.

In an autonomous spacecraft, the role of people on the
ground is necessarily changed. It is the spacecraftsoftware



that does the “last-minute” tine-tuning; on LX 1, the
autonomous navigation system updates knowledge of the
spacecraft’s trajectory. [iumans never see the actual specific
instance of the sequence of commands before execution.
Humans must trust the software to work in the general case;
there is no final check by humans of the specific sequence.

I’he presumption on which autonomy developers depend is
that the closed-loop nature of the autonomy more than
makes up for the lack of final human inspection of each
specific sequence. Instead of the traditional job of
constructing an open-loop sequence that will accomplish the
desired results even in the face of some unknowns, the job is
one of building models sufficiently correct that the
autonomous engines, with the advantage of real-time
knowledge, can accomplish the desired results.

Lessons

A large challenge is for the autonomy developers to
convince themselves and others that the autonomous
software will work in the general case. It is paramount that
a validation strategy be used to ensure that the models on
which the autonomous software depends are complete and
correct enough to succeed,

MOS personnel must become comfortable with planning
and monitoring at a higher level than traditional. In
addition, autonomous software systems should support the
ability for ground to interact at multiple levels of detail, so
that they can revert to a traditional level when necessary,
perhaps varying their level of interaction on an activity-by-
activity basis.

Many members of the ground operations community would
prefer for the introduction of autonomy to be able to be
phased, converting more functions to autonomous versions
as experience is gained on previous functions.

7.7 Validation Before Flight

Observation

There was constant concern about verifying and validating
autonomy, particularly within the system test team. There
was a misperception that the RA was a non-deterministic
system and that it therefore could not be adequately tested.
there was also the accurate perception that the increased
complexity of the software required a very large testing
effort.

Discr(ssion

A key issue that troubled the system test team was
predictability. A traditional sequence-driven flight software
system is very predictable; the test team can set the initial
conditions, run a sequence, and observe the results at a
detailed level. The Remote Agent, in contrast, is an
onboard closecl-loop control system that reacts to onboard
events and spacecraft-state, i.e., to data that is not a priori
predictable.

This unpredictability of onboard conditions, and thus
unpredictability of RA behavior, led to a misperception that
the RA was non-determinist ic .  In fact, the M is
deterministic to the extent that the same set of inputs will
yield the same set of outputs every time. However, it is true
that we cannot predict the exact set of commands that the
RA will use to achieve a set of goals far in the future since
we cannot predict exactly what the spacecraft state will be at
that time.

The key to testing such an “unpredictable” system can be
found in another context, namely, attitude control systems,
While we don’t know exactly when a particular thruster will
fire, we do know that the system will fire thrusters as needed
to achieve the higher-level goal of holding a commanded
attitude. Such a system is tested under multiple scenarios
to ensure that pointing error requirements are respected and
that propellant usage is acceptable. Similarly, the RA must
be tested under a variety of scenarios while verifying that
goals are achieved, flight rules are respected, and resource
usage is acceptable [3].

Lessons

It is incumbent upon autonomy technology providers to
codify a strategy for system-level verification and validation,
and then communicate that to the system test team. This
communication must build from a shared understanding of
the RA as a deterministic control system whose behavior
must be verified to remain within specific behavior
envelopes over a space of initial conditions and external
perturbations. Exhaustive testing is not feasible; what is
needed is intelligent spot-checking of a variety of nominal
situations, boundary conditions, and stress tests.

7.8 Validation In Flight

Observation

It is tricky to design in-flight validation scenarios to test
some of the capabilities of autonomous software systems.

Discussion

The primary reason for flying RA on DS- 1 was to validate
the technology for use in future missions. Some of the
RA’s capabilities, like advanced fault protection, are only
demonstrated in-flight if a problem arises. However, it is
difficult to see how to inject such problems in-flight
without endangering the spacecraftand the mission. Such
difficulties meant the RA flight validation scenarios were
not fleshed out until late in the design and it was difficult to
obtain resources (such as downlink capability) to support
the demonstrations. Similarly, some of the proposed
benefits of the RA, such as reduced operations costs or
increased software reuse, are hard to measure if there is no
separate operations process to compare it to during the same
mission.

Lessons

Autonomy technology developers and management should
carefully evaluate the tests \vhich need to be conducted in-
flight as soon as possible and develop with the project a
shared understanding of how the flight tests will be



conducted. The technology demonstration should also
accept that not everything will be tested, and that ground-
based testing will form an integral part of the technology
demonstration process. The software itself should be
designed with flight and ground-based testing needs in
mind from the start.

Autonomy development projects should set up processes to
carefully measure the benefits of the technology. This may
require increased investment of resources to support side-by-
side comparisons. Montemerlo has argued for the
importance of such comparisons, which he calls the “John
tlenry  test”, in convincing future customers to adopt a new
technology [6].

7.9 Architecture

Observation

IX 1‘s flight software architecture cleanly separated concerns
of real-time control, deduction of spacecraftstate, executive
control over multiple concurrent threads, and goaI-based
commanding via onboard planning. Further, a significant
amount of the “programming” was really knowledge
engineering, i.e., expressing spacecraft knowledge in
specialized non-procedural languages.

Discussion

The objective of autonomous operation for 1X31 required an
onboard closed-loop approach that included
“knowledgeable” components for performing much of the
reasoning that heretofore had been performed by ground
operations. This requirement led to the specialized
reasoning engines of the Remote Agent— engines for
planning of activities, for multi-threaded execution of plans,
and for fault localization ancl recovery. Although there are
important and necessary interactions among these engines,
they provide a clean separation of concerns in the software
architecture that mirrors, to some extent, the specializations
seen in traditional ground operations.

The RA engines each provide a distinct kind of reasoning,
and thus place different demands on how they are
programmed. For example, the planner/scheduler needs to
know the dependencies and constraints among activities for
accomplishing goals, and the mode
identification/reconfiguration engine needs to know how
subsystems behave, in nominal operating mode as well as
in failure modes. Each engine was “programmed” with such
factual knowledge using a non-procedural modeling
language designed for the task. The non-procedural nature of
these languages, plus the inference engines behind them,
allowed developers to focus on the easier task of stating
}t,hat is known versus the harder task of stating
llo~t/~i’ltetd~~’here  to apply it.

I’he organizing principles for control and knowledge
provided by the RA architecture gives programmers
considerable guidance and structure in its implementation.
Without it, as in more conventional spacecraft when the
target implementation language is a procedural language like

C, there is a much higher likelihood of software that
intertwines different issues in unprincipled ways.

[.essons

The basic design was right. The three major components of
the Remote Agent plus the real-time control component
provided a clean separation of concerns that mapped into an
agreeable division of labor. The existence of the RA’s
specialized inference engines, plus the declarative languages
for programming them, brought a lot of leverage that made a
difficult task more tractable.

7.10 Autocode Generation

Observatior~

Code generation from formal specifications was a big win,
and even bigger when the specifications included acceptance
tests.

Discti.wion

In DS1 there were a number of ’’monitor” modules whose
job was to notify the RA in the event of a change in state of
various measurements such as switch positions and
discretized low/nominal/lrigh  sensor readings like solar array
voltage. As the responsibilities of monitor modules evolved
to include things like telemetry recording and parameter
updating, it quickly became a tedious process to update all
monitors or even confirm that they performed a given task in
a consistent way.

The structural similarity of the monitor modules suggested
that a code template could be tailored for individual
monitors given a terse specification of an individual
monitor’s requirements. Further, since it was clear that the
person who would specify monitor requirements would be
in the best position to specify acceptance tests, the
specification language was expanded to include such tests.

Although the effort in building the code generator and code
template was substantial, especially in the middle of a
development cycle, the payoff was well worth it. Not only
did it automate a tedious coding/testing job and ensure a
consistent product, it also mentally freed the monitor
engineer to focus more on the problem (measurements, noise
filtering, thresholds, etc.) without concern about code design
and development, This really transformed a tedious job
into a pleasurable activity and yielded a tool that can be
reused on future projects.

l’cssons

When a design contains structurally-similar instantiations of
a non-trivial computational task, seriously consider code
generation from a formal specification. Even ignoring the
gain in productivity from code generation, there’s real value
in the clarity that comes from thinking in terms of the
problem rather than the implementation, and there’s comfort
from the guaranteed consistency.

7.1 I Spiral Development Approach



observation

Difficulties were experienced with the cyclical incremental
deliveries of the spiral development process.

Disclission

As describedin section 4, the spiral method of the flight
software development process resulted in cyclical
incremental releases. This process allowed the early
development of an end-to-end functioning system that
included all the subsystems, albeit of low fidelity in the
early cycles, complete with the ground system and test
environment. The intent was to demonstrate the scenario
with an end-to-end system, commanding through the
ground system and assessing the system and subsystem
behavior in the testbed.

In our implementation of the spiral development method we
required all subsystems to make a delivery of increased
capability at each cycle. This uniform requirement of all
subsystems to deliver at every cycle proved to be
troublesome in two ways. First, integrating all the software
modules in one “big bang” made the integration process
very complex, required extensive coordination to debug, and
consequently took longer than planned to complete.

Second, some subsystems whose natural progression of
increased functionality required a longer development period
than the cycle interval, found it difficult to juggle long-term
planning to complete the module and the short-term
requirement to deliver for the initial cyclical releases. For
example, as shown in Figure 4, the attitude control
functionality was scheduled for R2, but would have been
better scheduled for R3. It takes more than one cycle interval
to develop control laws and to integrate them with the
attitude control subsystem. From the beginning we should
have planned that some modules would skip certain
releases in keeping with their development pace and to ease
the integration process.

Another development mistake we made in an effort to
meet the extremely short schedule was to overlap the cycles.
That is, the next cycle was started when the previous cycle
completed integration but was just starting test. The
overlap required each of the development teams to work
concurrently on the testing of the previous cycle and the
development of the next release. With staff on some teams
already stretched thin, this concurrency led to the testing of
each cycle to be shortchanged.

[n hindsight we could also have ordered the scenarios better.
For example, we scheduled launch power-on-reset and
system initialization for R4 when it would have better
served us to schedule it in R3. The initialization capability
was needed in the integration and test of the R3 release
which had already incorporated the major functional ities
needed by the full system.

While the spiral method affords flexibility to change
contents from one cycle to another as warranted by the
dcvcloprnent  circumstances, there is a danger of continually
deferring contents into future cycles thus giving an

inaccurate assessment of progress. On IX I during planning
we allocated R5 as a contingency against such deferment and
we devoted R6 to validation and rework,

Lessons

Care should be taken when developing the schedule for
incremental system level releases not to overburden the
integration process by requiring all software modules to
deliver at every cycle.

The subsystem developers’ own assessment of a doable
increment not only to be delivered on time but which they
can support during test must be taken into account when
developing the spiral method plan. New releases do not
necessarily warrant updates from all subsystems.

Each cycle should be completed, including all testing
before, proceeding to the next cycle.

Schedule capabilities that help in the hardware integration
and test process for the earlier incremental releases.

8. SU M M A R Y

It is important to recognize that the basic design of the
three-component autonomy architecture—P1  anner/Scheduler,
Smart Executive, and Fault Diagnosis and Recover—-of the
Remote Agent is confirmed, The lessons presented in this
paper are being factored into the current autonomy
technology developments and future NMP missions. If the
lessons on the organizational impact are diligently
addressed, future cultural shock will be minimized. For
example, on DS3, the technologists will be consultants and
tool providers, while the spacecraft engineers and the
mission operations team will be responsible for project-
specitic implementations. A much-concerted effort is put
into the development of integration and testing tools. The
Remote Agent is being restructured such that the three
engines can be used separately and the degree of automation
can be adjusted according to mission needs [4]. Finally, due
to the richness of the DS1 mission, we can expect future
lessons papers on the Remote Agent Experiment on DS1
and on the DS 1 mission.
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